VS-VSKT105.., VS-VSKH105.., VS-VSKL105.., VS-VSKN105.. Series

Vishay Semiconductors

ADD-A-PAK Generation VII Power Modules Thyristor/Diode and Thyristor/Thyristor, 105 A

PRODUCT SUMMARY						
$I_{T(AV)}$ or $I_{F(AV)}$	105 A					
Туре	Modules - Thyristor, Standard					

MECHANICAL DESCRIPTION

The ADD-A-PAK Generation VII, new generation of ADD-A-PAK module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

- High voltage
- Industrial standard package
- Low thermal resistance
- UL approved file E78996
- Designed and qualified for industrial level

BENEFITS

- Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- Up to 1600 V
- High surge capability
- Easy mounting on heatsink

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS									
SYMBOL	CHARACTERISTICS	VALUES	UNITS						
I _{T(AV)} or I _{F(AV)}	85 °C	105							
I _{O(RMS)}	As AC switch	235	А						
I _{TSM,}	50 Hz	2000	A						
I _{FSM}	60 Hz	2094							
l ² t	50 Hz	20	kA ² s						
1-1	60 Hz	18.26	KA-S						
l²√t		200	kA²√s						
V _{RRM}	Range	400 to 1600	V						
T _{Stg}		-40 to 130	°C						
TJ		-40 to 130	U						

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS									
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM REPETITIVE PEAK OFF-STATE VOLTAGE, GATE OPEN CIRCUIT V	I _{RRM,} I _{DRM} AT 130 °C mA				
	04	400	500	400					
	06	600	700	600					
	08	800	900	800					
VS-VSK.105	10	1000	1100	1000	20				
	12	1200	1300	1200					
	14	1400	1500	1400					
	16	1600	1700	1600					

PARAMETER	SYMBOL		TEST COND	TIONS	VALUES	UNITS
Maximum average on-state current (thyristors)	I _{T(AV)}	180° conduction, half sine wave,		105		
Maximum average forward current (diodes)	I _{F(AV)}	T _C = 85 °C	· · ·			
Maximum continuous RMS on-state current, as AC switch	I _{O(RMS)}	•	or or I _(RMS)			A
		t = 10 ms	No voltage		2000	
Maximum peak, one-cycle non-repetitive on-state or forward current	I _{TSM}	t = 8.3 ms	reapplied	Sinusoidal half wave,	2094	
	or I _{FSM}	t = 10 ms	100 % V _{RRM}	initial $T_J = T_J$ maximum	1682	
	1 0101	t = 8.3 ms	reapplied		1760	
Maximum I ² t for fusing	l ² t	t = 10 ms	No voltage		20	kA ² s
		t = 8.3 ms	reapplied	Initial $T_J = T_J$ maximum	18.26	
		t = 10 ms	100 % V _{BBM}		14.14	
		t = 8.3 ms	reapplied		12.91	
Maximum I ² \sqrt{t} for fusing	²√t (1)	t = 0.1 ms to 1 T _J = T _J maxim	200	kA²√s		
Maximum value or threaded values	V (2)	Low level (3)	$T_J = T_J$ maximum		0.98	v
Maximum value or threshold voltage	V _{T(TO)} ⁽²⁾	High level ⁽⁴⁾			1.12	
Maximum value of on-state	r _t ⁽²⁾	Low level (3)	T T mavin		2.7	
slope resistance	ſt (=/	High level ⁽⁴⁾	$T_J = T_J$ maximum		2.34	mΩ
Maximum pack on state or forward valtage	V _{TM}	$I_{TM} = \pi \times I_{T(AV)}$	T 05 %O		1.8	V
Maximum peak on-state or forward voltage	V _{FM}	$I_{FM} = \pi \times I_{F(AV)}$				
Maximum non-repetitive rate of rise of turned on current	dl/dt	$T_J = 25 \text{ °C, fro}$ $I_{TM} = \pi \times I_{T(AV)}$,	150	A/µs		
Maximum holding current	Ι _Η	T _J = 25 °C, and resistive load,	250	mA		
Maximum latching current	l _l	T _{.1} = 25 °C. and	ode supply = 6	V, resistive load	400	

Notes

⁽¹⁾ I²t for time $t_x = I^2 \sqrt{t} x \sqrt{t_x}$

⁽²⁾ Average power = $V_{T(TO)} \times I_{T(AV)} + r_t \times (I_{T(RMS)})^2$

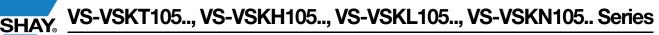
⁽³⁾ 16.7 % x π x I_{AV} < I < π x I_{AV}

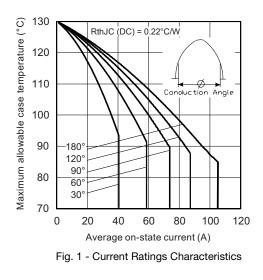
(4) $I > \pi x I_{AV}$

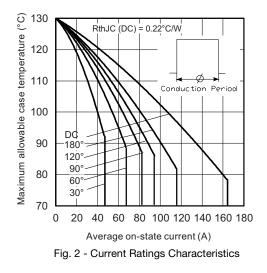
VISHAY, VS-VSKT105.., VS-VSKH105.., VS-VSKL105.., VS-VSKN105.. Series

Vishay Semiconductors

TRIGGERING								
PARAMETER	SYMBOL	YMBOL TEST CONDITIONS		VALUES	UNITS			
Maximum peak gate power	P _{GM}			12	W			
Maximum average gate power	P _{G(AV)}			3	vv			
Maximum peak gate current	I _{GM}			3	А			
Maximum peak negative gate voltage	- V _{GM}			10				
		T _J = -40 °C	Anode supply = 6 V resistive load	4.0	V			
Maximum gate voltage required to trigger	V _{GT}	T _J = 25 °C		2.5				
		T _J = 125 °C		1.7				
		T _J = -40 °C		270				
Maximum gate current required to trigger	I _{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	150	mA			
		T _J = 125 °C		80				
Maximum gate voltage that will not trigger	V _{GD}	T_J = 125 °C, rated V_{DR}	0.25	V				
Maximum gate current that will not trigger	I _{GD}	T_J = 125 °C, rated V_{DR}	_M applied	6	mA			


BLOCKING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum peak reverse and off-state leakage current at V _{RRM} , V _{DRM}	I _{RRM,} I _{DRM}	T _J = 130 °C, gate open circuit	20	mA				
Maximum RMS insulation voltage	V _{INS}	50 Hz	3000 (1 min) 3600 (1 s)	V				
Maximum critical rate of rise of off-state voltage	dV/dt	T_J = 130 °C, linear to 0.67 V _{DRM}	1000	V/µs				


THERMAL AND MECHANICAL SPECIFICATIONS								
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Junction operating temperature r	ange	TJ		-40 to 130	°C			
Storage temperature range		T _{Stg}		-40 10 130	0			
Maximum internal thermal resistance, junction to case per leg		R _{thJC}	DC operation	0.22	• °C/W			
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.1				
	to heatsink		A mounting compound is recommended and the torque should be rechecked after a period	4				
Mounting torque ± 10 %	busbar		of 3 hours to allow for the spread of the compound.	3	Nm			
Approximate weight				75	g			
				2.7	oz.			
Case style			JEDEC®	AAP GEN VI	(TO-240AA)			


DEVICES	5	SINE HALF	WAVE CO	NDUCTIO	N	RECTANGULAR WAVE CONDUCTION					
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30 °	
VSK.105	0.04	0.048	0.063	0.085	0.125	0.033	0.052	0.067	0.088	0.127	°C/W

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

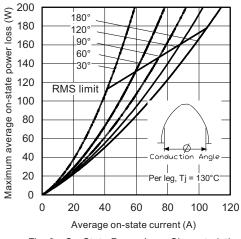
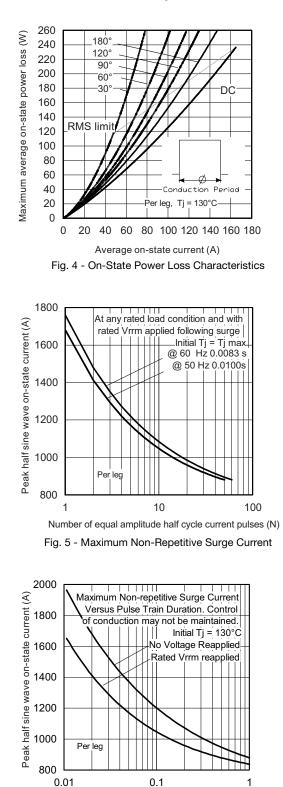
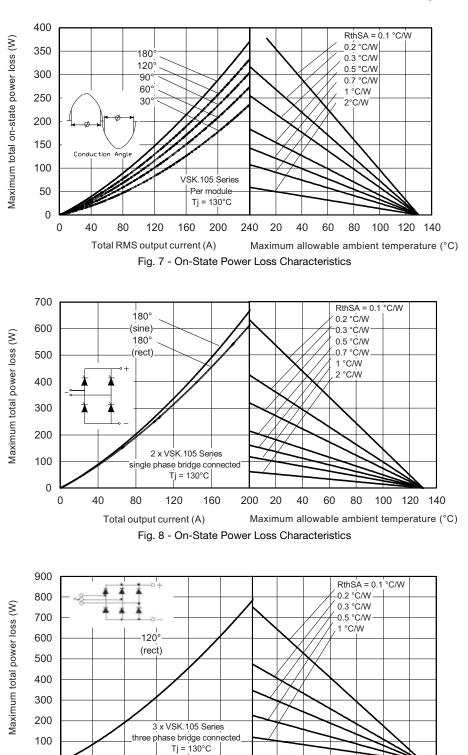




Fig. 3 - On-State Power Loss Characteristics

Pulse train duration (s) Fig. 6 - Maximum Non-Repetitive Surge Current

240 20

40 60

80

100 120 140

0

40

80

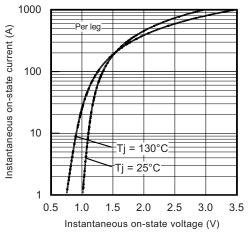
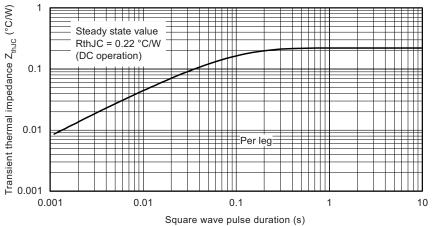
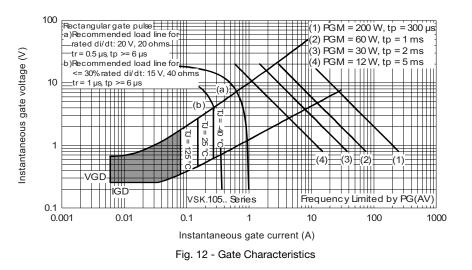
120

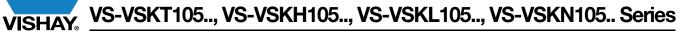
160

200

VS-VSKT105.., VS-VSKH105.., VS-VSKL105.., VS-VSKN105.. Series

Vishay Semiconductors


Fig. 10 - On-State Voltage Drop Characteristics

VISHAY

ORDERING INFORMATION TABLE

Device code	vs-	vs	К	т	105	1	16	
		D	2	3	4		5	
	1	-		hay Sem		tors pro	duct	
	2	-		dule type cuit confi		(see Ci	rcuit Co	onfiguration table)
	4	-	Cu	rent cod	e (105 A	A)		- , , , , , , , , , , , , , , , , , , ,
	5	-	Vol	tage cod	e (see \	/oltage l	Ratings	table)

CIRCUIT CONFIGURATION								
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING						
Two SCRs doubler circuit	т	VSKT						
SCR/diode doubler circuit, positive control	н							
SCR/diode doubler circuit, negative control	L							
SCR/diode common anodes	Ν	VSKN						

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.